If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+15t=448
We move all terms to the left:
t^2+15t-(448)=0
a = 1; b = 15; c = -448;
Δ = b2-4ac
Δ = 152-4·1·(-448)
Δ = 2017
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{2017}}{2*1}=\frac{-15-\sqrt{2017}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{2017}}{2*1}=\frac{-15+\sqrt{2017}}{2} $
| 2–1/4f=f–3/4f+3 | | 2–14f=f–34f+3 | | -6(1-4x)=138 | | 2p/3-19/3=-7 | | -(z+3)/5=-4 | | 11y+5=-3(5-2y) | | -2(3x+5)=4x-70 | | 5(4-2x)=6(5x+10) | | x+5/3=2x+8/4 | | 10-4z=-9z | | K²—2k+1=0 | | 6(-7x-7)=-168 | | 2q-3=-3+2q | | t^2+15t-448=0 | | (6^x/6)(6^x/3)=6^8 | | x)=9x2–54x | | 3/2x+1/2=4/3x | | 4w+15=59 | | 12=3(x−1)12=3(x−1) | | x)=9x2–54x–144 | | (7w-7)+(5w+1)+90=180 | | x)=9x2–54x–144, | | (7w-7)+(5w+1)=180 | | 3+7c=8c-7 | | -1/3x*2-2/3x+1/9=0 | | 0.7t-3.2=7.2 | | 6(x−7)=10(x+4) | | 3u-4=-17 | | 6x+30-15x+6=18x= | | y-3y=28 | | 5x-4+3x=-28 | | 3=1/2x2x |